Monday, August 18, 2025

Create your Own Private LLM : Steps

Creating a private LLM (Large Language Model) involves a number of technical and strategic steps, depending on your goals (e.g., fine-tuning an existing model vs. training from scratch) and constraints (e.g., budget, privacy needs). Here's a step-by-step guide tailored to building a private LLM — meaning one that runs on your infrastructure, with your data, and no outside access.

 

STEP 1: DEFINE THE SCOPE

Decide:

  • Purpose (chatbot, summarization, code generation, etc.)
  • Model size (e.g., 1B, 7B, 13B parameters)
  • Data privacy level (air-gapped, self-hosted, etc.)
  • Budget & hardware constraints

 

STEP 2: CHOOSE A BASE MODEL (OR NOT)

Options:

  • Fine-tune an existing open-source model (Recommended)
    • E.g., LLaMA 3, Mistral, Falcon, Gemma
  • Train from scratch (Only if you have millions of $$ and data)
  • Use parameter-efficient tuning (PEFT) like LoRA or QLoRA

Recommended base models:

Model

Size

Notes

LLaMA 3

8B, 70B

Best quality (Meta, requires request access)

Mistral

7B

Apache 2.0 licensed, good performance

Phi-3

3.8B

Small, efficient

Gemma

2B, 7B

Good small model, Google-backed

Falcon

7B, 40B

Good for Arabic and multilingual use cases

 

STEP 3: GATHER & PREPARE TRAINING DATA

Private use case:

  • Use internal documents, chat logs, customer queries, codebases
  • Ensure PII is handled properly (remove or mask sensitive data)

Preprocess:

  • Clean formatting, remove duplicates, convert to plain text/JSON
  • Tokenize using model's tokenizer
  • Optional: Use cleanlab or argilla to curate data

 

STEP 4: TRAIN OR FINE-TUNE THE MODEL

Toolkits:

  • Transformers + PEFT (HuggingFace + LoRA/QLoRA)
  • Axolotl — easy fine-tuning framework for open LLMs
  • DeepSpeedFSDP — for large-scale distributed training

Training methods:

Method

Cost

Notes

LoRA / QLoRA

Low

Add-on layers, very efficient

Full fine-tune

High

More control, requires more compute

RAG (optional)

Medium

Retrieval-Augmented Generation; no training required

Hardware:

  • At least 1x A100 (40GB+) or 4x 3090s for 7B models
  • Use Lambda LabsRunPodPaperspace, or local GPU servers

 

STEP 5: DEPLOY THE MODEL PRIVATELY

Self-hosted options:

  • vLLM — optimized serving of LLMs
  • Text Generation Inference (TGI) — Hugging Face inference server
  • Ollama — easiest local deployment (for Mac/Linux)
  • LMDeployTriton, or custom FastAPI wrappers

Containerize:

  • Use Docker + Kubernetes if scaling is needed
  • Use NVIDIA Triton for high-efficiency serving

 

STEP 6: SECURE THE DEPLOYMENT

  • Run air-gapped if high security required
  • Add authentication (e.g., API keys, OAuth)
  • Limit rate of access to avoid overload
  • Log inputs/outputs for auditing, not data collection

 

STEP 7: EVALUATE & IMPROVE

Evaluate on:

  • Accuracyhelpfulnesstoxicitybias
  • Use OpenLLM Leaderboardlm-evaluation-harness
  • Add feedback loops for RLHF or continual fine-tuning

 

OPTIONAL: ADD RETRIEVAL OR TOOLS

  • Add a RAG system using:
    • LangChain, LlamaIndex, Haystack
    • Vector DBs: ChromaFAISSWeaviateQdrant
  • Connect to tools: databases, web APIs, internal system

 

No comments:

Post a Comment


People call me aggressive, people think I am intimidating, People say that I am a hard nut to crack. But I guess people young or old do like hard nuts -- Isnt It? :-)