Videos:
1. LLM Introduction:
https://www.youtube.com/watch?v=zjkBMFhNj_g
2. LLMs from Scratch:
https://www.youtube.com/watch?v=9vM4p9NN0Ts
3. Agentic AI Overview (Stanford):
https://www.youtube.com/watch?v=kJLiOGle3Lw
4. Building and Evaluating Agents:
https://www.youtube.com/watch?v=d5EltXhbcfA
5. Building Effective Agents:
https://www.youtube.com/watch?v=D7_ipDqhtwk
6. Building Agents with MCP:
https://www.youtube.com/watch?v=kQmXtrmQ5Zg
7. Building an Agent from Scratch:
https://www.youtube.com/watch?v=xzXdLRUyjUg
8. Philo Agents:
https://www.youtube.com/playlist?list=PLacQJwuclt_sV-tfZmpT1Ov6jldHl30NR
Repos
1. GenAI Agents: https://github.com/nirdiamant/GenAI_Agents
2. Microsoft's AI Agents for Beginners:
https://github.com/microsoft/ai-agents-for-beginners
3. Prompt Engineering Guide: https://lnkd.in/gJjGbxQr
4. Hands-On Large Language Models: https://lnkd.in/dxaVF86w
5. AI Agents for Beginners:
https://github.com/microsoft/ai-agents-for-beginners
6. GenAI Agents: https://lnkd.in/dEt72MEy
7. Made with ML: https://lnkd.in/d2dMACMj
8. Hands-On AI
Engineering:https://github.com/Sumanth077/Hands-On-AI-Engineering
9. Awesome Generative AI Guide: https://lnkd.in/dJ8gxp3a
10. Designing Machine Learning Systems:
https://lnkd.in/dEx8sQJK
11. Machine Learning for Beginners from Microsoft:
https://lnkd.in/dBj3BAEY
12. LLM Course: https://github.com/mlabonne/llm-course
Guides
1. Google's Agent Whitepaper: https://lnkd.in/gFvCfbSN
2. Google's Agent Companion: https://lnkd.in/gfmCrgAH
3. Building Effective Agents by Anthropic:
https://lnkd.in/gRWKANS4
4. Claude Code Best Agentic Coding practices:
https://lnkd.in/gs99zyCf
5. OpenAI's Practical Guide to Building Agents:
https://lnkd.in/guRfXsFK
Books:
1. Understanding Deep Learning:
https://udlbook.github.io/udlbook/
2. Building an LLM from Scratch: https://lnkd.in/g2YGbnWS
3. The LLM Engineering Handbook: https://lnkd.in/gWUT2EXe
4. AI Agents: The Definitive Guide - Nicole
Koenigstein: https://lnkd.in/dJ9wFNMD
5. Building Applications with AI Agents - Michael Albada:
https://lnkd.in/dSs8srk5
6. AI Agents with MCP - Kyle Stratis:
https://lnkd.in/dR22bEiZ
7. AI Engineering:
https://www.oreilly.com/library/view/ai-engineering/9781098166298/
Papers
1. ReAct: https://lnkd.in/gRBH3ZRq
2. Generative Agents: https://lnkd.in/gsDCUsWm
3. Toolformer: https://lnkd.in/gyzrege6
4. Chain-of-Thought Prompting: https://lnkd.in/gaK5CXzD
5. Tree of Thoughts: https://lnkd.in/gRJdv_iU
6. Reflexion: https://lnkd.in/gGFMgjUj
7. Retrieval-Augmented Generation Survey:
https://lnkd.in/gGUqkkyR
Courses:
1. HuggingFace's Agent Course: https://lnkd.in/gmTftTXV
2. MCP with Anthropic: https://lnkd.in/geffcwdq
3. Building Vector Databases with Pinecone:
https://lnkd.in/gCS4sd7Y
4. Vector Databases from Embeddings to Apps:
https://lnkd.in/gm9HR6_2
5. Agent Memory: https://lnkd.in/gNFpC542
6. Building and Evaluating RAG apps:
https://lnkd.in/g2qC9-mh
7. Building Browser Agents: https://lnkd.in/gsMmCifQ
8. LLMOps: https://lnkd.in/g7bHU37w
9. Evaluating AI Agents: https://lnkd.in/gHJtwF5s
10. Computer Use with Anthropic: https://lnkd.in/gMUWg7Fa
11. Multi-Agent Use: https://lnkd.in/gU9DY9kj
12. Improving LLM Accuracy: https://lnkd.in/gsE-4FvY
13. Agent Design Patterns: https://lnkd.in/gzKvx5A4
14. Multi Agent Systems: https://lnkd.in/gUayts9s
Newsletters
1. Gradient Ascent: https://lnkd.in/gZbZAeQW
2. DecodingML by Paul: https://lnkd.in/gpZPgk7J
3. Deep (Learning) Focus by Cameron:
https://lnkd.in/gTUNcUVE
4. NeoSage by Shivani: https://blog.neosage.io/
5. Jam with AI by Shirin and Shantanu:
https://lnkd.in/gQXJzuV8
6. Data Hustle by Sai: https://lnkd.in/gZpdTTYD
No comments:
Post a Comment